Dynamic Scheduling for Large-Scale Distributed-Memory Ray Tracing
نویسندگان
چکیده
Ray tracing is an attractive technique for visualizing scientific data because it can produce high quality images that faithfully represent physically-based phenomena. Its embarrassingly parallel reputation makes it a natural candidate for visualizing large data sets on distributed memory clusters, especially for machines without specialized graphics hardware. Unfortunately, the traditional recursive ray tracing algorithm is exceptionally memory inefficient on large data, especially when using a shading model that generates incoherent secondary rays. As visualization moves through the petascale to the exascale, disk and memory efficiency will become increasingly important for performance, and traditional methods are inadequate. This paper presents a dynamic ray scheduling algorithm that effectively manages both ray state and data accesses. Our algorithm can render datasets that are larger than aggregate system memory, which existing statically scheduled ray tracers cannot render. For example, using 1024 cores of a supercomputing cluster, our unoptimized algorithm ray traces a 650GB dataset from an N-Body simulation with shadows and reflections, at about 1100 seconds per frame. For smaller problems that fit in aggregate memory, but are larger than typical shared memory, our algorithm is competitive with the best static scheduling algorithm.
منابع مشابه
A Study of Ray Tracing Large-scale Scientific Data in Parallel Visualization Applications
Large-scale analysis and visualization is becoming increasingly important as supercomputers and their simulations produce larger and larger data. These large data sizes are pushing the limits of traditional rendering algorithms and tools thus motivating a study exploring these limits and their possible resolutions through alternative rendering algorithms . In order to better understand real-wor...
متن کاملDistributed Ray Tracer on GPU
Ray tracing is a method for producing photorealistic 3D computer generated imagery by modeling the interaction of light rays with a scene. Because each primary ray is independent of other primary rays being modeled, ray tracing offers massive degrees of parallelism that is suitable to parallel architectures like GPUs, multicore CPUs, and distributed computing environments. Our goal is to implem...
متن کاملMemory-Savvy Distributed Interactive Ray Tracing
Interactive ray tracing in a cluster environment requires paying close attention to the constraints of a loosely coupled distributed system. To render large scenes interactively, memory limits and network latency must be addressed efficiently. In this paper, we improve previous systems by moving to a page-based distributed shared memory layer, resulting in faster and easier access to a shared m...
متن کاملEfficient data management for incoherent ray tracing
To obtain good performance on the GPU hardware, it is necessary to design algorithms to manage data, access memory under GPU memory hierarchy, and schedule more efficient threads. In this paper, we propose an efficient data management and task management designed for GPU based ray tracing. Due to the dynamic and uncertainty in ray tracing, we design data-management layer and task-management lay...
متن کاملCoordinated resource scheduling in a large scale virtual power plant considering demand response and energy storages
Virtual power plant (VPP) is an effective approach to aggregate distributed generation resources under a central control. This paper introduces a mixed-integer linear programming model for optimal scheduling of the internal resources of a large scale VPP in order to maximize its profit. The proposed model studies the effect of a demand response (DR) program on the scheduling of the VPP. The pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012